alexa ES cells derived from cloned and fertilized blastocysts are transcriptionally and functionally indistinguishable.
Biomedical Sciences

Biomedical Sciences

Journal of Bioengineering & Biomedical Science

Author(s): Brambrink T, Hochedlinger K, Bell G, Jaenisch R

Abstract Share this page

Abstract Reproductive cloning is uniformly rejected as a valid technology in humans because of the severely abnormal phenotypes seen in cloned animals. Gene expression aberrations observed in tissues of cloned animals have also raised concerns regarding the therapeutic application of "customized" embryonic stem (ES) cells derived by nuclear transplantation (NT) from a patient's somatic cells. Although previous experiments in mice have demonstrated that the developmental potential of ES cells derived from cloned blastocysts (NT-ES cells) is identical to that of ES cells derived from fertilized blastocysts, a systematic molecular characterization of NT-ES cell lines is lacking. To investigate whether transcriptional aberrations, similar to those observed in tissues of cloned mice, also occur in NT-ES cells, we have compared transcriptional profiles of 10 mouse NT- and fertilization-derived-ES cell lines. We report here that the ES cell lines derived from cloned and fertilized mouse blastocysts are indistinguishable based on their transcriptional profiles, consistent with their normal developmental potential. Our results indicate that, in contrast to embryonic and fetal development of clones, the process of NT-ES cell derivation rigorously selects for those immortal cells that have erased the "epigenetic memory" of the donor nucleus and, thus, become functionally equivalent. Our findings support the notion that ES cell lines derived from cloned or fertilized blastocysts have an identical therapeutic potential.
This article was published in Proc Natl Acad Sci U S A and referenced in Journal of Bioengineering & Biomedical Science

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords