alexa Escaping the curse of dimensionality in estimating multivariate transfer entropy.
Engineering

Engineering

Journal of Telecommunications System & Management

Author(s): Runge J, Heitzig J, Petoukhov V, Kurths J

Abstract Share this page

Abstract Multivariate transfer entropy (TE) is a model-free approach to detect causalities in multivariate time series. It is able to distinguish direct from indirect causality and common drivers without assuming any underlying model. But despite these advantages it has mostly been applied in a bivariate setting as it is hard to estimate reliably in high dimensions since its definition involves infinite vectors. To overcome this limitation, we propose to embed TE into the framework of graphical models and present a formula that decomposes TE into a sum of finite-dimensional contributions that we call decomposed transfer entropy. Graphical models further provide a richer picture because they also yield the causal coupling delays. To estimate the graphical model we suggest an iterative algorithm, a modified version of the PC-algorithm with a very low estimation dimension. We present an appropriate significance test and demonstrate the method's performance using examples of nonlinear stochastic delay-differential equations and observational climate data (sea level pressure). This article was published in Phys Rev Lett and referenced in Journal of Telecommunications System & Management

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords