alexa ESR spectral transition by arteriovenous cycle in nitric oxide hemoglobin of cytokine-treated rats.
Pharmaceutical Sciences

Pharmaceutical Sciences

Pharmaceutica Analytica Acta

Author(s): Kosaka H, Sawai Y, Sakaguchi H, Kumura E, Harada N,

Abstract Share this page

Abstract Nitric oxide (NO) generation was induced in rats by Escherichia coli lipopolysaccharide (LPS) as detected by electron spin resonance (ESR) signals of NO hemoglobin (HbNO). However, there were inconsistencies in ESR spectral shape among them. We have therefore carried out a systematic study to clarify the in vivo spectral changes. First, the spectra of the alpha-NO heme species had the distinct three-line hyperfine structure in venous blood but not in arterial blood in all rats treated with tumor necrosis factor, interleukin-1, and/or LPS, and methemoglobin was not detected at the g = 6 (high-spin methemoglobin) region. Second, when the treated rats died, the three-line hyperfine structure was very distinct even in arterial blood. Third, even if HbNO was formed by injection of nitrite to rats, the three-line hyperfine structure of HbNO in venous blood was more marked than that in arterial blood, independent of the appearance of the methemoglobin signal. Fourth, an ex vivo study using whole blood demonstrated that the three-line hyperfine structure intensified lineally when O2 saturation of hemoglobin decreased but disappeared on reoxygenation of hemoglobin. These results directly demonstrate in vivo quaternary structural transition of the hemoglobin tetramer from the high-affinity state in the arterial cycle to the low-affinity state in the venous cycle. The transition makes the diverse ESR spectra of HbNO in vivo.
This article was published in Am J Physiol and referenced in Pharmaceutica Analytica Acta

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version