alexa Essential explanation of the strong mineralization performance of boron-doped diamond electrodes.


Toxicology: Open Access

Author(s): Zhu X, Tong M, Shi S, Zhao H, Ni J, Zhu X, Tong M, Shi S, Zhao H, Ni J

Abstract Share this page

Abstract Electrochemical oxidation of p-nitrophenol was examined using differentanodic materials, including T/boron-doped diamond (BDD), Ti/SnO2-Sb/PbO2, and Ti/SnO2-Sb anodes. The results demonstrated that Ti/BDD anodes had a much stronger mineralization performance than the other two anodes. Furthermore, it was found that hydroxyl radicals could mainly exist as free hydroxyl radicals at BDD anodes, which could react with organic compounds effectively. This implied that the dominant mechanism for a much higher mineralization capacity of BDD anodes would be attributed to the existence of free hydroxyl radicals in the BDD anode cell rather than adsorbed hydroxyl radicals on the BDD anode. To further corroborate this hypothesis, electrochemical oxidation of p-substituted phenols (p-nitrophenol, p-hydroxybenzaldehyde, phenol, p-cresol, and p-methoxyphenol) was examined at the Ti/BDD, Ti/SnO2-Sb/ PbO2, and Ti/SnO2-Sb anodes, respectively. The study revealed that for Ti/BDD electrodes, the degradation rate of p-substituted phenols (k) increased with the increase of Hammett's constant (sigma), which confirmed the dominance of free hydroxyl radicals at BDD anodes and its effective reaction with organics therein. For Ti/SnO2-Sb/PbO2 electrodes, the degradation rate of p-substituted phenols (k) increased with the increase of initial surface concentration gamma (representing the adsorption capacity of phenols to electrode surface), which indicated that organic compounds mainly reacted with adsorbed hydroxyl radicals at PbO2 anodes. For Ti/SnO2-Sb electrodes, however, k increased with the increase of the integrated parameter S (representing the effects of both sigma and gamma), which implied that organic compounds reacted with both adsorbed hydroxyl radicals and free hydroxyl radicals at SnO2 anodes.
This article was published in Environ Sci Technol and referenced in Toxicology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version