alexa Establishment and characterization of plasmid-driven minigenome rescue systems for Nipah virus: RNA polymerase I- and T7-catalyzed generation of functional paramyxoviral RNA.
Chemical Engineering

Chemical Engineering

Journal of Bioprocessing & Biotechniques

Author(s): Freiberg A, Dolores LK, Enterlein S, Flick R

Abstract Share this page

Abstract In this study we report the development and optimization of two minigenome rescue systems for Nipah virus, a member of the Paramyxoviridae family. One is mediated by the T7 RNA polymerase supplied either by a constitutively expressing cell line or by transfection of expression plasmids and is thus independent from infection with a helper virus. The other approach is based on RNA polymerase I-driven transcription, a unique approach for paramyxovirus reverse genetics technology. Minigenome rescue was evaluated by reporter gene activities of (i) the two different minigenome transcription systems, (ii) genomic versus antigenomic-oriented minigenomes, (iii) different ratios of the viral protein expression plasmids, and (iv) time course experiments. The high efficiency and reliability of the established systems allowed for downscaling to 96-well plates. This served as a basis for the development of a high-throughput screening system for potential antivirals that target replication and transcription of Nipah virus without the need of high bio-containment. Using this system we were able to identify two compounds that reduced minigenome activity.
This article was published in Virology and referenced in Journal of Bioprocessing & Biotechniques

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 2nd World Biotechnology Congress
    December 04-06, 2017 Sao Paulo, Brazil

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords