alexa Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases.
Infectious Diseases

Infectious Diseases

Journal of AIDS & Clinical Research

Author(s): Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, , Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA,

Abstract Share this page

Abstract Homozygosity for the naturally occurring Delta32 deletion in the HIV co-receptor CCR5 confers resistance to HIV-1 infection. We generated an HIV-resistant genotype de novo using engineered zinc-finger nucleases (ZFNs) to disrupt endogenous CCR5. Transient expression of CCR5 ZFNs permanently and specifically disrupted approximately 50\% of CCR5 alleles in a pool of primary human CD4(+) T cells. Genetic disruption of CCR5 provided robust, stable and heritable protection against HIV-1 infection in vitro and in vivo in a NOG model of HIV infection. HIV-1-infected mice engrafted with ZFN-modified CD4(+) T cells had lower viral loads and higher CD4(+) T-cell counts than mice engrafted with wild-type CD4(+) T cells, consistent with the potential to reconstitute immune function in individuals with HIV/AIDS by maintenance of an HIV-resistant CD4(+) T-cell population. Thus adoptive transfer of ex vivo expanded CCR5 ZFN-modified autologous CD4(+) T cells in HIV patients is an attractive approach for the treatment of HIV-1 infection.
This article was published in Nat Biotechnol and referenced in Journal of AIDS & Clinical Research

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords