alexa Estimating effective degrees of freedom in motor systems.
Biomedical Sciences

Biomedical Sciences

Journal of Bioengineering & Biomedical Science

Author(s): Clewley RH, Guckenheimer JM, ValeroCuevas FJ

Abstract Share this page

Abstract Studies of the degrees of freedom and "synergies" in musculoskeletal systems rely critically on algorithms to estimate the "dimension" of kinematic or neural data. Linear algorithms such as principal component analysis (PCA) are the most popular. However, many biological data (or realistic experimental data) may be better represented by nonlinear sets than linear subspaces. We evaluate the performance of PCA and compare it to two nonlinear algorithms [Isomap and our novel pointwise dimension estimation (PD-E)] using synthetic and motion capture data from a robotic arm with known kinematic dimensions, as well as motion capture data from human hands. We find that PCA can lead to more accurate dimension estimates when considering additional properties of the PCA residuals, instead of the dominant method of using a threshold of variance captured. In contrast to the single integer dimension estimates of PCA and Isomap, PD-E provides a distribution and range of estimates of fractal dimension that identify the heterogeneous geometric structure in the experimental data. A strength of the PD-E method is that it associates a distribution of dimensions to the data. Since there is no a priori reason to assume that the sets of interest have a single dimension, these distributions incorporate more information than a single summary statistic. Our preliminary findings suggest that fewer than ten DOFs are involved in some hand motion tasks. Contrary to common opinion regarding fractal dimension methods, PD-E yielded reasonable results with reasonable amounts of data. Given the complex nature of experimental and biological data, we conclude that it is necessary and feasible to complement PCA with methods that take into consideration the nonlinear properties of biological systems for a more robust estimation of their DOFs. This article was published in IEEE Trans Biomed Eng and referenced in Journal of Bioengineering & Biomedical Science

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords