alexa Estimation of levels of gene flow from DNA sequence data.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Phylogenetics & Evolutionary Biology

Author(s): Hudson RR, Slatkin M, Maddison WP, Hudson RR, Slatkin M, Maddison WP

Abstract Share this page

Abstract We compare the utility of two methods for estimating the average levels of gene flow from DNA sequence data. One method is based on estimating FST from frequencies at polymorphic sites, treating each site as a separate locus. The other method is based on computing the minimum number of migration events consistent with the gene tree inferred from their sequences. We compared the performance of these two methods on data that were generated by a computer simulation program that assumed the infinite sites model of mutation and that assumed an island model of migration. We found that in general when there is no recombination, the cladistic method performed better than FST while the reverse was true for rates of recombination similar to those found in eukaryotic nuclear genes, although FST performed better for all recombination rates for very low levels of migration (Nm = 0.1).
This article was published in Genetics and referenced in Journal of Phylogenetics & Evolutionary Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords