alexa Estimation of lipoperoxidative damage and antioxidant status in diabetic children: relationship with individual antioxidants.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Diabetes & Metabolism

Author(s): MartnGalln P, Carrascosa A, Gussinye M, Domnguez C

Abstract Share this page

Abstract Increased oxidative stress has emerged as a potential mechanism implicated in the pathogenesis, progression and cell dysfunction associated with many diseases including diabetes. In routine clinical practice, the estimation of the degree of oxidative damage and antioxidant status, even in paediatric patients, by appropriate techniques appears to be of interest. The aim of this study was to reliably identify patients with increased oxidant stress and/or reduced antioxidant defence mechanisms with a small blood sample and verify the applicability to the study of diabetic children (DC) at clinical onset of the disease. In 1-ml blood samples from 30 DC and 34 controls, techniques for accurately measuring malondialdehyde (MDA) concentrations in plasma and erythrocytes (using HPLC analysis with fluorometric detection), total radical antioxidant potential (TRAP) and blood plasma oxidizability were adapted and validated. Plasma alpha-tocopherol (HPLC), uric acid and sulfhydryl (SH) groups were also determined. At clinical onset of diabetes a significant reduction in plasma TRAP values (P<0.01) was observed in DC compared with controls. Similarly, a significant fall in individual antioxidant levels (alpha-tocopherol/total lipids, uric acid and protein SH) was noted in plasma of DC. Highly significant increases were found in both plasma and erythrocyte MDA levels in DC (p-MDA:1.7+/-0.2 microM; er-MDA: 7.2+/-0.7 nmol/g Hb) compared with controls (p-MDA:0.86+/-0.09 microM; P<0.0003; er-MDA:3.8+/-0.2 nmol/g Hb, P<0.0001). Plasma MDA and triglyceride levels correlated directly only in DC (P<0.001). Whole plasma oxidizability was significantly higher in DC than in controls (P<0.0001) and this parameter correlated significantly with plasma cholesterol and triglyceride concentrations (P<0.0001). The micromethods adapted and applied to the simultaneous detection of lipid peroxidation products and antioxidant status permit accurate and reliable assessment of the oxidative stress process in small plasma samples. Our results clearly show systemic peroxidative damage associated with insufficient defence mechanisms against ROS to be already present at clinical onset of type 1 diabetes mellitus in children and adolescents. This article was published in Free Radic Res and referenced in Journal of Diabetes & Metabolism

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords