alexa Estrogen increases locomotor activity in mice through estrogen receptor alpha: specificity for the type of activity.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Steroids & Hormonal Science

Author(s): Ogawa S, Chan J, Gustafsson JA, Korach KS, Pfaff DW

Abstract Share this page

Abstract Estrogens are known to increase running wheel activity of rodents primarily by acting on the medial preoptic area (mPOA). The mechanisms of this estrogenic regulation of running wheel activity are not completely understood. In particular, little is known about the separate roles of two types of estrogen receptors, ERalpha and ERbeta, both of which are expressed in mPOA neurons. In the present study the effects of continuous estrogen treatment on running wheel activity were examined in male and female mice specifically lacking either the ERalpha (alphaERKO) or the ERbeta (betaERKO) gene. Mice were gonadectomized and 1 wk later implanted with either a low dose (16 ng/d) or a high dose (160 ng/d) of estradiol benzoate (EB) or with a placebo control pellet. Home cage running wheel activity was recorded for 9 d starting 10 d after EB implants. The same mice were also tested for open field activity before and after EB implants. In both female and male alphaERKO mice, running wheel activity was not different from that in corresponding wild-type (alphaWT) mice in placebo control groups. In both females and males it was increased by EB only in alphaWT, not alphaERKO, mice. In betaERKO mice, on the other hand, both doses of EB equally increased running wheel activity in both sexes just as they did in betaWT mice. Absolute numbers of daily revolutions of EB-treated groups, however, were significantly lower in betaERKO females compared with betaWT females. Before EB treatment, gonadectomized alphaERKO female were significantly less active than alphaWT mice in open field tests, whereas betaERKO females tended to be more active than betaWT mice. In male mice there were no effect of ERalpha or ERbeta gene knockout on open field activity. Unlike its effect on running wheel activity, EB treatment induced only a small increase in open field activity in female, but not male, mice. These findings indicate that 1) in both sexes estrogenic regulation of running wheel activity is primarily mediated through the ERalpha, not the ERbeta; and 2) hormone/genotype effects are specific to the type of locomotor activity (i.e. home cage running wheel activity and open field activity) measured. This article was published in Endocrinology and referenced in Journal of Steroids & Hormonal Science

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords