alexa Evaluating controllability of pharmaceuticals and metabolites in biologically engineered processes, using corresponding octanol–water distribution coefficient
Toxicology

Toxicology

Journal of Clinical Toxicology

Author(s): Sungyun Lee, SuIl Kang, JaeLim Lim, Yu Jeong Huh, KapSoon Kim

Abstract Share this page

The efficiency of removing 9 different pharmaceuticals, 5 carbamazepine metabolites, and 1 personal care product through wastewater treatment plants and constructed wetlands was investigated. The compound concentrations were measured using solid phase extraction followed by liquid chromatography quadrupole tandem mass spectrometry. For extraction confirmation and better accuracy, isotopic dilution and standards addition methods were employed. The reporting limits for the investigated compounds were less than 10 ng/L except TCEP (24 ng/L). The removal efficiencies were found to be inversely proportional to the octanol–water partition coefficients (log Kow) after modification with ionizable functional groups (log Dow); compounds with a higher hydrophilicity were more efficiently removed in the engineered processes through biological treatment mechanisms. Carbamazepine metabolites that were formed in the early stages of certain metabolic reactions exhibited enhanced removal efficiencies due to a decreased log Dow values. However, the removal efficiency of those formed in later stages did not increase, but rather fluctuated with large standard deviations. The removal behaviors of metabolites in biologically operating engineered systems need to be more extensively examined.

This article was published in Ecological Engineering and referenced in Journal of Clinical Toxicology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords