alexa Evaluation and controlled release characteristics of modified xanthan films for transdermal delivery of atenolol.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Pharmaceutical Care & Health Systems

Author(s): Mundargi RC, Patil SA, Agnihotri SA, Aminabhavi TM

Abstract Share this page

Abstract The present study was performed to evaluate the possibility of using modified xanthan films as a matrix system for transdermal delivery of atenolol (ATL), which is an antihypertensive drug. Acrylamide was grafted onto xanthan gum (XG) by free radical polymerization using ceric ion as an initiator. Fourier transform infrared spectroscopy and differential scanning calorimetry indicated the formation of the graft copolymer. The obtained graft copolymer was loaded with ATL and films were fabricated by solution casting method for transdermal application. Various formulations were prepared by varying the grafting ratio, drug loading, and different penetration enhancers. The formulations prepared were characterized for weight, thickness uniformity, water vapor transmission rate, and uniformity in drug content of the matrix. All the thin films were slightly opaque, smooth, flexible, and permeable to water vapor, indicating their permeability characteristics suitable for transdermal studies. Fourier transform infrared spectroscopy and differential scanning calorimetry studies indicated no significant interactions between drug and polymer. Drug is distributed uniformly in the matrix but showed a slight amorphous nature. Drug-loaded films were analyzed by X-ray diffraction to understand the drug polymorphism inside the films. Scanning electron microscopic studies of the placebo and drug-loaded films demonstrated a remarkable change in their surface morphology. The skin irritation tests were performed in mice and these results suggested that both placebo and drug-loaded films produced negligible erythema and edema compared to formalin (0.8\% v/v) as the standard irritant. The in vitro drug release studies were performed in phosphate buffer saline using a Keshary-Chien diffusion cell. Different formulations were prepared and variations in drug release profiles were observed. Release data were analyzed by using the Ritger and Peppas equation to understand the mechanism of drug release as well as the estimation of n values, which ranged between 0.41 and 0.53, suggesting a Fickian diffusion trend. This article was published in Drug Dev Ind Pharm and referenced in Journal of Pharmaceutical Care & Health Systems

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords