alexa Evaluation of breast cancer risk assessment packages in the family history evaluation and screening programme.


Advances in Cancer Prevention

Author(s): Amir E

Abstract Share this page


Accurate individualised breast cancer risk assessment is essential to provide risk-benefit analysis prior to initiating interventions designed to lower breast cancer risk. Several mathematical models for the estimation of individual breast cancer risk have been proposed. However, no single model integrates family history, hormonal factors, and benign breast disease in a comprehensive fashion. A new model by Tyrer and Cuzick has addressed these deficiencies. Therefore, this study has assessed the goodness of fit and discriminatory value of the Tyrer-Cuzick model against established models namely Gail, Claus, and Ford.


The goodness of fit and discriminatory accuracy of the models was assessed using data from 1933 women attending the Family History Evaluation and Screening Programme, of whom 52 developed cancer. All models were applied to these women over a mean follow up of 5.27 years to estimate risk of breast cancer.


The ratios (95% confidence intervals) of expected to observed numbers of breast cancers were 0.48 (0.37 to 0.64) for Gail, 0.56 (0.43 to 0.75) for Claus, 0.49 (0.37 to 0.65) for Ford, and 0.81 (0.62 to 1.08) for Tyrer-Cuzick. The accuracy of the models for individual cases was evaluated using ROC curves. These showed that the area under the curve was 0.735 for Gail, 0.716 for Claus, 0.737 for Ford, and 0.762 for Tyrer-Cuzick.


The Tyrer-Cuzick model is the most consistently accurate model for prediction of breast cancer. The Gail, Claus, and Ford models all significantly underestimate risk, although the accuracy of the Claus model may be improved by adjustments for other risk factors.

  • To read the full article Visit
  • Subscription
This article was published in J Med Genet and referenced in Advances in Cancer Prevention

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version