alexa Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates.
Microbiology

Microbiology

Journal of Microbial & Biochemical Technology

Author(s): Lee HS, Parameswaran P, KatoMarcus A, Torres CI, Rittmann BE

Abstract Share this page

Abstract We established the first complete electron-equivalent balances in microbial fuel cells (MFCs) fed with non-fermentable (acetate) and fermentable (glucose) electron donors by experimentally quantifying current, biomass, residual organic compounds, H(2), and CH(4) gas. The comparison of the two donors allowed us to objectively evaluate the diversion of electron flow to non-electricity sinks for fermentable donors, leading to different behaviors in energy-conversion efficiency (ECE) and potential efficiency (PE). Electrical current was the most significant electron sink in both MFCs, being 71\% and 49\%, respectively, of the initial COD applied. Biomass and residual organic compounds, the second and third greatest sinks, respectively, were greater in the glucose-fed MFC than in the acetate-fed MFC. We detected methane gas only in the glucose-fed MFC, and this means that anode-respiring bacteria (ARB) could out-compete acetoclastic methanogens. The ECE was 42\% with acetate, but was only 3\% with glucose. The very low ECE for glucose was mostly due to a large increase of the anode potential, giving a PE of only 6\%. Although the glucose-fed MFC had the higher biomass density on its anode, it had a very low current density, which supports the fact that the density of ARB was very low. This led to slow kinetics for electron transfer to the anode and accentuated loss due to the substrate-concentration gradient in the anode-biofilm. The large drop of PE with low current, probably caused by a low ARB density and electron (e(-)) donor concentration, resulted in a poor maximum power density (9.8mW/m(2)) with glucose. In contrast, PE reached 59\% along with high current for acetate and the maximum power density was 360mW/m(2). This article was published in Water Res and referenced in Journal of Microbial & Biochemical Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords