alexa Evaluation of nanoparticle aggregation in human blood serum.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Rausch K, Reuter A, Fischer K, Schmidt M

Abstract Share this page

Abstract In a certain stage of development, the performance of nanoparticle- or polymer-drug conjugates is tested "in vivo", that is, in mice or rats. Besides pharmaceutical and chemical characterization, the structural characterization of such drug carrier systems in terms of size, size distribution, and shape is typically performed in physiological salt solution prior to animal tests. The present work introduces a simple method based on dynamic light scattering to monitor the particle size in blood serum. Utilizing a model system of pegylated poly-l-lysines (PLL-g-PEOx) of various degrees of pegylation, x, it is demonstrated that large aggregates may form in human serum solution that are not observed in isotonic salt solution. Aggregates of a few hundred nanometers in size were found in mixtures of serum solution and PLL-g-PEOx with degrees of pegylation <10\%, whereas no aggregates are being observed if the degree of pegylation exceeds 20\%. The described method may have the potential to become an easy and routine test for drug carrier systems prior to animal applications. This article was published in Biomacromolecules and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords