alexa Evaluation of nuclear DNA damage in human spermatozoa in men opting for assisted reproduction.
Toxicology

Toxicology

Journal of Environmental & Analytical Toxicology

Author(s): Shamsi MB, Kumar R, Dada R

Abstract Share this page

Abstract Diagnosis of sperm DNA integrity of semen sample is important for consistently high reproductive efficiency. The conventional parameters of semen analysis take into account morphology, motility, and concentration of spermatozoa in the sample, which are insufficient for evaluation of reproductive potential. Current studies have implicated abnormal organization of genomic material in sperms as a probable cause in 20 per cent cases of male infertility. This is especially important in the era of assisted reproduction technique (ART) when a majority of infertile couples opt for assisted reproduction and in where cases DNA integrity is a better diagnostic and prognostic marker as compared to routine semen analysis. This article reviews and discusses some of the current techniques employed for evaluating chromatin structure or DNA damage in spermatozoa. These different techniques include single cell gel electrophoresis (COMET assay), Terminal tranferase dUTP Nick End Labelling (TUNEL), sperm chromatin structure assay (SCSA), In situ nick translation (ISNT) and acridine orange test. These techniques are independent measure of sperm quality and assist in semen quality assessment by detecting defects in DNA integrity or chromatin structure. The discussed techniques vary in their level of accuracy, cost input, sophistication of analysis and their application depends upon the sensitivity required for analysis. The article also briefly outlines the DNA packaging and the causes of DNA damage in spermatozoa. During chromatin packing 85 per cent of the histones are replaced by protamine while the residual histones act as marker of genes which are expressed in early embryonic development. Among the different aetiological factors observed to be responsible for DNA damage in human spermatozoa increased reactive oxygen species (ROS), oxidative stress is highly correlated with greater DNA fragmentation index (DFI). Oxidative stress leads to single and double strand breaks in sperm DNA. Apoptosis and abnormal chromatin packing also contribute to DNA damage. The significance of chromatin structure studies is more stressed owing to the greater awareness to transmission of genetic diseases because of higher incidence of gene imprinting defects, increased cancer frequency and other congenital and non-congenital defects in children conceived through assisted reproduction techniques.
This article was published in Indian J Med Res and referenced in Journal of Environmental & Analytical Toxicology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version