alexa Evaluation of source leaf responses to water-deficit stresses in cotton using a novel stress bioassay.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Transcriptomics: Open Access

Author(s): Burke JJ, Burke JJ

Abstract Share this page

Abstract Water-deficit stresses preferentially reduce shoot growth, thereby disrupting the flow of carbohydrates from source leaves to the developing sinks. Here, we use a novel stress bioassay to dissect responses of field and greenhouse-grown cotton (Gossypium hirsutum) source leaves to water-deficit stresses. Fifth main stem leaf samples were harvested at sunrise and subjected to a prolonged elevated respiratory demand in the dark. Sucrose levels are lower in nonstressed cotton at sunrise compared to water-deficit stressed cotton, potentially predisposing the nonstressed tissue to succumb more rapidly. Tissue death was determined initially using the cell viability stain 2,3,5-triphenyltetrazolium chloride, but was determined in subsequent experiments by monitoring the decline in chlorophyll fluorescence yield. Fluorescence yield measurements were obtained within minutes of harvesting and individual samples were monitored over the time course of the treatment. Analyses of the time course and magnitude of chlorophyll fluorescence yield decline in samples from irrigated and dryland plots permitted the detection of stress responses within 24 h of the cessation of irrigation. The rate of fluorescence yield decline during the elevated respiratory demand treatment slowed as the water-deficit stress increased. Upon irrigation, the source leaves of the water-stressed plants recovered to prestress values within 4 d. Well-watered cotton overexpressing heat shock protein 101 had identical rates of fluorescence yield decline as nontransgenic cotton. These results suggest that the delayed decline in fluorescence yield of water-stressed tissue exposed to prolonged elevated respiratory demand can be used as a sensitive indicator of water-deficit stress responses.
This article was published in Plant Physiol and referenced in Transcriptomics: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 2nd International Conference on Nucleic Acids , Molecular Biology & Biologics
    August 31-September 01, 2017 Philadelphia, Pennsylvania, USA
  • 2nd World Congress on Human Genetics & Genetic Disorders
    November 02-03, 2017 Toronto, Canada
  • 3rd International Conference on Genetic and Protein Engineering
    Nov 08-Nov 09, 2017 Las Vegas, USA

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords