alexa Evaluation of stretched electrospun silk fibroin matrices seeded with urothelial cells for urethra reconstruction.
General Science

General Science

Journal of Biotechnology & Biomaterials

Author(s): Xie M, Song L, Wang J, Fan S, Zhang Y,

Abstract Share this page

Abstract BACKGROUND: We investigated the feasibility of urethral reconstruction using stretched electrospun silk fibroin matrices. MATERIALS AND METHODS: A novel electrospun silk fibroin matrix was prepared. The structure of the material was assessed by scanning electron microscopy and a porosity test. Canine urothelial cells were isolated, expanded, and seeded onto the material for 1 wk to obtain a tissue-engineered graft. The tissue-engineered graft was assessed using hematoxylin and eosin staining and scanning electron microscopy. A dorsal urethral mucosal defect was created in nine female beagle dogs. In the experimental group, tissue-engineered mucosa was used to repair urethra mucosa defects in six dogs. No substitute was used in the three dogs of the control group. Retrograde urethrography was performed at 1, 2, and 6 mo after grafting. The urethral grafts were analyzed grossly and histologically. RESULTS: Scanning electron microscope and a porosity test revealed that the material had a three-dimensional porous structure. Urothelial cells grew on the material and showed good biocompatibility with the stretched silk fibroin matrices. Canines implanted with tissue-engineered mucosa voided without difficulty. Retrograde urethrography revealed no signs of stricture. Histologic staining showed gradual epithelial cell development and stratified epithelial layers at 1, 2, and 6 mo. The canines in the control group showed difficulty in voiding. Retrograde urethrography showed urethra stricture. Histologic staining showed that no or only one layer of epithelial cells developed. A severe inflammatory reaction was also observed in the control group. CONCLUSIONS: Stretched electrospun silk fibroin matrices have good biocompatibility with urothelial cells, which could prove to be a potential material for use in urethra reconstruction. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved. This article was published in J Surg Res and referenced in Journal of Biotechnology & Biomaterials

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords