alexa Evidence for a unique mechanism of strand transfer from the transactivation response region of HIV-1.
Genetics & Molecular Biology

Genetics & Molecular Biology

Cloning & Transgenesis

Author(s): Kim JK, Palaniappan C, Wu W, Fay PJ, Bambara RA

Abstract Share this page

Abstract We previously found that strand transfer by human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) is promoted at sites where RT pauses during synthesis. In this report, strand transfer is measured within the 5' transactivation response region (TAR) of HIV-1 RNA. We hypothesized that the stable hairpin structure of TAR would induce RT pausing, promoting RNase H-directed cleavage of the template and subsequent transfer at that site. We further predicted that HIV-1 nucleocapsid protein (NC), known to melt secondary structures, would decrease transfer. We show that TAR created a strong pause site for RT, but NC significantly promoted strand transfer. The effect of NC is specific, since other single strand binding proteins failed to stimulate transfer. In another unexpected outcome, preferred positions of internal transfer were not at the pause site but were in the upper stem and loop of TAR. Thus, we propose a new mechanism for transfer within TAR described by an interactive hairpin model, in which association between the donor and the acceptor templates within the TAR stem promotes transfer. The model is consistent with the observed stimulation of strand transfer by NC. The model is applicable to internal and replicative end transfer.
This article was published in J Biol Chem and referenced in Cloning & Transgenesis

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version