alexa Evidence for dysregulation of genome-wide recombination in oocytes with nondisjoined chromosomes 21.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Down Syndrome & Chromosome Abnormalities

Author(s): Middlebrooks CD, Bean LJ, Allen EG, Tinker SW, Mukhopadhyay N

Abstract Share this page


In oocytes with nondisjoined chromosomes 21 due to a meiosis I (MI) error, recombination is significantly reduced along chromosome 21; several lines of evidence indicate that this contributes to the nondisjunction event. A pilot study found evidence that these oocytes also have reduced recombination genome-wide when compared with controls. This suggests that factors that act globally may be contributing to the reduced recombination on chromosome 21, and hence, the nondisjunction event. To identify the source of these factors, we examined two levels of recombination count regulation in oocytes: (i) regulation at the maternal level that leads to correlation in genome-wide recombination across her oocytes and (ii) regulation at the oocyte level that leads to correlation in recombination count among the chromosomes of an oocyte. We sought to determine whether either of these properties was altered in oocytes with an MI error. As it relates to maternal regulation, we found that both oocytes with an MI error (N = 94) and their siblings (N = 64) had reduced recombination when compared with controls (N = 2723). At the oocyte level, we found that the correlation in recombination count among the chromosomes of an oocyte is reduced in oocytes with MI errors compared with that of their siblings or controls. These results suggest that regulation at the maternal level predisposes MI error oocytes to reduced levels of recombination, but additional oocyte-specific dysregulation contributes to the nondisjunction event

This article was published in Hum Mol Genet and referenced in Journal of Down Syndrome & Chromosome Abnormalities

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version