alexa Evidence that prostaglandins mediate the antihypertensive actions of angiotensin-(1-7) during chronic blockade of the renin-angiotensin system.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Bioequivalence & Bioavailability

Author(s): Iyer SN, Yamada K, Diz DI, Ferrario CM, Chappell MC

Abstract Share this page

Abstract Prostaglandins are known to participate in the antihypertensive actions of angiotensin-converting enzyme (ACE) inhibition and angiotensin type 1 (AT1)-receptor antagonism. Because angiotensin-(1-7) [Ang-(1-7)] is markedly elevated after prolonged ACE-inhibitor treatment, we determined whether the antihypertensive effects of Ang-(1-7) were mediated by release of prostaglandins. Male spontaneously hypertensive rats (SHRs, 10 weeks) were treated for 9 days with either lisinopril (20 mg/kg) or losartan (10 mg/kg) or a combination of both drugs. Rats were implanted with catheters in the carotid artery and jugular vein to record blood pressure and to infuse drug solutions, respectively. Neutralization of circulating Ang-(1-7) by monoclonal antibody resulted in a dose-dependent increase in blood pressure in SHRs treated with either lisinopril or losartan. Administration of CGS 24592 to block Ang-(1-7) formation also resulted in an increase in blood pressure that was comparable to antibody infusion. However, Ang-(1-7) blockade evoked a greater elevation in blood pressure in the lisinopril and lisinopril/losartan-treated rats in comparison to those treated with losartan alone. Acute treatment with the cyclooxygenase (COX) inhibitor indomethacin increased blood pressure to a similar extent to that of CGS 24592, as well as blocked the increase in pressure with the neprilysin inhibitor in the lisinopril/losartan group. In the losartan-treated animals, however, indomethacin increased blood pressure by a larger extent than that of the Ang-(1-7) antibody or CGS 24592, and CGS 24592 did not abolish the subsequent pressor response to indomethacin in these animals. In contrast to the antibody or neprilysin inhibitor, administration of the Ang-(1-7) antagonist D-[Ala7]-Ang-(1-7) increased blood pressure to a similar extent in lisinopril or losartan treatments. Moreover, D-[Ala7]-Ang-(1-7) increased blood pressure to a comparable extent as indomethacin and blocked any further increase with the COX inhibitor in the losartan-treated SHRs. High-resolution emulsion autoradiography revealed 125I-[Sarcosine1, Threonine8]-Ang II (Sarthran) binding in the mesenteric artery and thoracic aorta in the presence of both LOS and the AT2 antagonist PD123319. The non-AT1/non-AT2 Sarthran binding was displaced by Ang-(1-7), DALA, or Ang II. These studies suggest that vasodilatory eicosanoids mediate the antihypertensive effects of endogenous Ang-(1-7) in both LIS and LIS/LOS therapies. Furthermore, in the presence of AT1-receptor blockade, Ang II may interact with a DALA-sensitive site to promote eicosanoid release.
This article was published in J Cardiovasc Pharmacol and referenced in Journal of Bioequivalence & Bioavailability

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords