alexa Evolving Classifiers to Recognize the Movement Characteristics of Parkinson's Disease Patients
Engineering

Engineering

Journal of Biosensors & Bioelectronics

Author(s): Michael A Lones, Stephen L Smith, Jane E Alty

Abstract Share this page

Parkinson's disease is a debilitating neurological condition that affects approximately 1 in 500 people and often leads to severe disability. To improve clinical care, better assessment tools are needed that increase the accuracy of differential diagnosis and disease monitoring. In this paper, we report how we have used evolutionary algorithms to induce classifiers capable of recognizing the movement characteristics of Parkinson's disease patients. These diagnostically relevant patterns of movement are known to occur over multiple time scales. To capture this, we used two different classifier architectures: sliding-window genetic programming classifiers, which model over-represented local patterns that occur within time series data, and artificial biochemical networks, computational dynamical systems that respond to dynamical patterns occurring over longer time scales. Classifiers were trained and validated using movement recordings of 49 patients and 41 age-matched controls collected during a recent clinical study. By combining classifiers with diverse behaviors, we were able to construct classifier ensembles with diagnostic accuracies in the region of 95%, comparable to the accuracies achieved by expert clinicians. Further analysis indicated a number of features of diagnostic relevance, including the differential effect of handedness and the over-representation of certain patterns of acceleration.

This article was published in IEEE Transactions on Evolutionary Computation and referenced in Journal of Biosensors & Bioelectronics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords