alexa Exercise-dependent IGF-I, IGFBPs, and type I collagen changes in human peritendinous connective tissue determined by microdialysis.
Orthopaedics

Orthopaedics

Orthopedic & Muscular System: Current Research

Author(s): Olesen JL, Heinemeier KM, Gemmer C, Kjaer M, Flyvbjerg A,

Abstract Share this page

Abstract Microdialysis studies indicate that mechanical loading of human tendon during exercise elevates type I collagen production in tendon. However, the possibility that the insertion of microdialysis fibers per se may increase the local collagen production due to trauma has not been explored. Insulin-like growth factor I (IGF-I) and its binding proteins (IGFBPs), which are known to stimulate collagen production in animal tendons, may regulate the translation of mechanical loading to collagen synthesis. Systemic and tissue levels of IGF-I, IGFBP, and type I collagen metabolism markers [procollagen I COOH-terminal propeptide (PICP) and COOH-terminal telopeptide of type I collagen] were measured by microdialysis in peritendinous tissue of the human Achilles tendon in an exercise group (performing a 36-km run, n = 6) and a control group (no intervention, n = 6). An increase in local PICP concentration was seen in both groups after 72 h and stayed elevated in the exercise group at 96 h (P < 0.05). IGFBP-1 in both serum and dialysate increased in the exercise group immediately after exercise (P < 0.05), whereas IGFBP-3 decreased systemically (P < 0.05). Elevation of local IGFBP-4 was observed in both the control and exercise groups after 48 h (P < 0.05). Total IGF-I did not change in locally or systemically in either group. Our results indicate an increased local production of PICP in human peritendinous tissue in response to prolonged mechanical loading with part of the increase due to trauma from the sampling technique. Care must therefore be emphasized to minimize the numbers of insertions with microdialysis. We demonstrated an elevation of IGFBP-1 both systemically and peritendinously in response to prolonged acute exercise. The local increased collagen synthesis was preceded by an elevation of local concentration of IGFBP-4, suggesting that IGFBP-4 may have a key role in the IGF-axis effect on the human collagen synthesis in vivo. This article was published in J Appl Physiol (1985) and referenced in Orthopedic & Muscular System: Current Research

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords