alexa Expectation-maximization method for reconstructing tumor phylogenies from single-cell data.


Journal of Antivirals & Antiretrovirals

Author(s): Pennington G, Smith CA, Shackney S, Schwartz R

Abstract Share this page

Abstract Recent studies of gene expression in cancerous tumors have revealed that cancers presenting indistinguishable symptoms in the clinic can represent substantially different entities at the molecular level. The ability to distinguish between these different cancers makes possible more accurate prognoses and more finely targeted therapeutics. Making full use of this knowledge, however, requires characterizing commonly occurring cancer sub-types and the specific molecular abnormalities that produce them. Computational approaches to this problem to date have been hindered by the fact that tumors are highly heterogeneous masses typically containing cells at multiple stages of progression from healthy to aggressively malignant. We present a computational approach for taking advantage of tumor heterogeneity when characterizing tumor progression pathways by inferring those pathways from single-cell assays. Our approach uses phylogenetic algorithms to infer likely evolutionary sequences producing cell populations in single tumors, which are in turn used to create a profile of commonly used pathways across the patient population. This approach is combined with expectation maximization to infer unknown parameters used in the phylogeny construction. We demonstrate the approach on a set of fluorescent in situ hybridization (FISH) data measuring cell-by-cell gene and chromosome copy numbers in a large sample of breast cancers. The results validate the proposed computational methods by showing consistency with several previous findings on these cancers. They also provide novel insights into the mechanisms of tumor progression in these patients.
This article was published in Comput Syst Bioinformatics Conf and referenced in Journal of Antivirals & Antiretrovirals

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version