alexa Explaining statin inhibition effectiveness of HMG-CoA reductase by quantum biochemistry computations.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Proteomics & Bioinformatics

Author(s): da Costa RF, Freire VN, Bezerra EM, Cavada BS, Caetano EW,

Abstract Share this page

Abstract By taking advantage of the crystallographic data of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) complexed with statins, a quantum biochemistry study based on the density functional theory is performed to estimate the interaction energy for each statin when one considers binding pockets of different sizes. Assuming a correlation between statin potency and the strength of the total HMGR-statin binding energy, clinical data as well as IC(50) values of these cholesterol-lowering drugs are successfully explained only after stabilization of the calculated total binding energy for a larger size of the ligand-interacting HGMR region, one with a radius of at least 12.0 Å. Actually, the binding pocket radius suggested by classic works, which was based solely on the interpretation of crystallographic data of the HMGR-statin complex, is smaller than that necessary to achieve total binding energy convergence in our simulations. Atorvastatin and rosuvastatin are shown to be the most strongly bound HMGR inhibitors, while simvastatin and fluvastatin are the weakest ones. A binding site, interaction energy between residues and statin atoms, and residues domain (BIRD) panel is constructed, indicating clear quantum biochemistry-based routes for the development of new statin derivatives. This article was published in Phys Chem Chem Phys and referenced in Journal of Proteomics & Bioinformatics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th International Conference on Bioinformatics
    October 23-24, 2017 Paris, France
  • 9th International Conference and Expo on Proteomics
    October 23-25, 2017 Paris, France

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords