alexa Expression of a cyclophilin OsCyp2-P isolated from a salt-tolerant landrace of rice in tobacco alleviates stress via ion homeostasis and limiting ROS accumulation.
Psychiatry

Psychiatry

Journal of Addiction Research & Therapy

Author(s): Kumari S, Joshi R, Singh K, Roy S, Tripathi AK,

Abstract Share this page

Abstract Cyclophilins are a set of ubiquitous proteins present in all subcellular compartments, involved in a wide variety of cellular processes. Comparative bioinformatics analysis of the rice and Arabidopsis genomes led us to identify novel putative cyclophilin gene family members in both the genomes not reported previously. We grouped cyclophilin members with similar molecular weight and subtypes together in the phylogenetic tree which indicated their co-evolution in rice and Arabidopsis. We also characterized a rice cyclophilin gene, OsCyp2-P (Os02g0121300), isolated from a salinity-tolerant landrace, Pokkali. Publicly available massively parallel signature sequencing (MPSS) and microarray data, besides our quantitative real time PCR (qRT-PCR) data suggest that transcript abundance of OsCyp2-P is regulated under different stress conditions in a developmental and organ specific manner. Ectopic expression of OsCyp2-P imparted multiple abiotic stress tolerance to transgenic tobacco plants as evidenced by higher root length, shoot length, chlorophyll content, and K(+)/Na(+) ratio under stress conditions. Transgenic plants also showed reduced lipid peroxidase content, electrolyte leakage, and superoxide content under stress conditions suggesting better ion homeostasis than WT plants. Localization studies confirmed that OsCyp2-P is localized in both cytosol and nucleus, indicating its possible interaction with several other proteins. The overall results suggest the explicit role of OsCyp2-P in bestowing multiple abiotic stress tolerance at the whole plant level. OsCyp2-P operates via reactive oxygen species (ROS) scavenging and ion homeostasis and thus is a promising candidate gene for enhancing multiple abiotic stress tolerance in crop plants. This article was published in Funct Integr Genomics and referenced in Journal of Addiction Research & Therapy

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords