alexa Expression of active human C1 inhibitor serpin domain in Escherichia coli.


Journal of Hematology & Thromboembolic Diseases

Author(s): Lamark T, Ingebrigtsen M, Bjrnstad C, Melkko T, Mollnes TE,

Abstract Share this page

Abstract Human C1 inhibitor is a highly glycosylated serine protease inhibitor of the serpin family. The protein contains two disulfide bonds. In this study, an N-terminally truncated form of recombinant C1 inhibitor was overexpressed in Escherichia coli strains BL21(DE3) and AD494(DE3), the latter enabling the formation of disulfide bonds within the cytoplasm. With both strains, a major fraction of the recombinant protein produced appeared to be insoluble. However, the soluble fraction of lysates from strain AD494(DE3) inhibited the C1s target protease in functional assays. Recombinant C1 inhibitor produced in this strain also displayed the ability to complex with C1s in vitro. In contrast, lysates from strain BL21(DE3) displayed no C1 inhibitor activity. These data support the notion that glycosylation is not important, whereas disulfide bond formation appears to be essential for the production of an active recombinant C1 inhibitor. Thus, bacterial strains that permit the formation of disulfide bonds may represent a reliable system for the production of recombinant C1 inhibitor. However, a major obstacle to large-scale production will be to produce the protein in a soluble form. Attempts to increase the yield of soluble protein by coexpression of the GroEL/ES chaperonins resulted in an increase in solubility. Copyright 2001 Academic Press. This article was published in Protein Expr Purif and referenced in Journal of Hematology & Thromboembolic Diseases

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version