alexa Expression of CX3CL1 fractalkine by mesangial cells in vitro and in acute anti-Thy1 glomerulonephritis in rats.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Chen YM, HuTsai MI, Lin SL, Tsai TJ, Hsieh BS

Abstract Share this page

Abstract BACKGROUND: Mesangial cells (MCs) can promote glomerular macrophage accumulation in glomerulonephritis through production of a variety of chemokines. This study investigated the potential of MCs to synthesize CX3CL1/fractalkine, a CX3C chemokine, both in vitro and in acute anti-Thy1 glomerulonephritis in rats. METHODS: Anti-Thy1 glomerulonephritis was induced in Wistar rats by a single injection of mouse anti-rat Thy1.1 antibody intravenously. Glomerular mRNAs for CX3CL1/fractalkine, CCL2/monocyte chemoattractant protein (MCP)-1, and their cognate receptors, CX3CR1 and CCR2, were determined by northern blot analysis or reverse-transcription polymerase chain reaction. CX3CL1/fractalkine mRNA and protein expression in vivo was localized by in situ hybridization and immunohistochemistry. Monocytes/macrophages and activated MCs were detected by immunohistochemistry. Regulation of CX3CL1/fractalkine expression in cultured MCs was determined by northern and western blot analysis. RESULTS: After induction of anti-Thy1 disease, glomerular CX3CL1/fractalkine mRNA was significantly up-regulated, peaking at 2 h and sustaining into day 5 of the nephritis. A corresponding increase in urinary CX3CL1/fractalkine protein was evident after day 1 of the nephritis, but became more prominent during the MC proliferative phase (days 3-5). Meanwhile, induction of glomerular CCL2/MCP-1 mRNA and urinary CCL2/MCP-1 protein occurred within 24 h, and was barely detectable after day 3 of the nephritis. Urinary CCL2/MCP-1, but not CX3CL1/fractalkine, correlated with glomerular macrophage accumulation (r = 0.936, P<0.01) and glomerular CCR2 mRNA expression (r = 0.965, P<0.01). In contrast, only urinary CX3CL1/fractalkine coincided temporally to glomerular mRNA for CX3CR1 (r = 0.809, P < 0.01). Combined in situ hybridization and immunohistochemistry revealed that activated MCs were a major source for CX3CL1/fractalkine mRNA and protein during days 3-5 of the nephritis. Incubation of cultured MCs with tumour necrosis factor (TNF)-alpha, interleukin (IL)-1beta, platelet-derived growth factor (PDGF)-AB or basic fibroblast growth factor (bFGF) significantly up-regulated CX3CL1/fractalkine mRNA and protein expression. This cytokine- and growth factor-stimulated CX3CL1/fractalkine expression could be abolished by the nuclear factor-kappaB inhibitors, curcumin and MG132. CONCLUSIONS: Our data demonstrate that activated MCs are a source for the augmented glomerular CX3CL1/fractalkine expression during the proliferative phase of acute anti-Thy1 glomerulonephritis. Up-regulation of MC CX3CL1/fractalkine by TNF-alpha, IL-1beta, PDGF-AB and bFGF is mediated, at least in part, via the nuclear factor-kappaB signalling pathway. The differential expression of CCL2/MCP-1 and CX3CL1/fractalkine may sequentially recruit distinct subsets of monocytes to the glomerulus during acute anti-Thy1 glomerulonephritis.
This article was published in Nephrol Dial Transplant and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Recommended Conferences

  • Nano Congress for Next Generation
    August 31-September 01, 2017 Brussels,Belgium
  • Graphene & 2D Materials
    September 14-15, 2017 Edinburgh, Scotland
  • Graphene & 2D Materials
    November 6-7, 2017 Frankfurt, Germany
  • World Congress on Nanoscience and Nano Technology
    October 16-17, 2017 Dubai, UAE
  • World Medical Nanotechnology Congress
    October 18-19, 2017 Osaka, Japan
  • Nanoscienceand Molecular Nanotechnology
    Nov 06-08, 2017 Frankfurt, Germany
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords