alexa Extent and kinetics of recovery of occult spinal cord injury.
Oncology

Oncology

Journal of Nuclear Medicine & Radiation Therapy

Author(s): Ang KK, Jiang GL, Feng Y, Stephens LC, Tucker SL,

Abstract Share this page

Abstract PURPOSE: To obtain clinically useful quantitative data on the extent and kinetics of recovery of occult radiation injury in primate spinal cord, after a commonly administered elective radiation dose of 44 Gy, given in about 2 Gy per fraction. METHODS AND MATERIALS: A group of 56 rhesus monkeys was assigned to receive two radiation courses to the cervical and upper thoracic spinal cord, given in 2.2 Gy per fraction. The dose of the initial course was 44 Gy in all monkeys. Reirradiation dose was 57.2 Gy, given after 1-year (n = 16) or 2-year (n = 20) intervals, or 66 Gy, given after 2-year (n = 4) or 3-year (n = 14) intervals. Two animals developed intramedullary tumors before reirradiation and, therefore, did not receive a second course. The study endpoint was myeloparesis, manifesting predominantly as lower extremity weakness and decrease in balance, occurring within 2.5 years after reirradiation, complemented by histologic examination of the spinal cord. The data obtained were analyzed along with data from a previous study addressing single-course tolerance, and data from a preliminary study of reirradiation tolerance. RESULTS: Only 4 of 45 monkeys completing the required observation period (2-2.5 years after reirradiation, 3-5.5 years total) developed myeloparesis. The data revealed a substantial recovery of occult injury induced by 44 Gy within the first year, and suggested additional recovery between 1 and 3 years. Fitting the data with a model, assuming that all (single course and reirradiation) dose-response curves were parallel, yielded recovery estimates of 33.6 Gy (76\%), 37.6 Gy (85\%), and 44.6 Gy (101\%) of the initial dose, after 1, 2, and 3 years, respectively, at the 5\% incidence (D(5)) level. The most conservative estimate, using a model in which it was assumed that there was no recovery between 1 and 3 years following initial irradiation and that the combined reirradiation curve was not necessarily parallel to the single-course curve, still showed an overall recovery equivalent to 26.8 Gy (61\%). The spinal cords of symptomatic monkeys consistently revealed a mixture of white matter necrosis and vascular injury, but the majority of spinal cords of asymptomatic animals did not exhibit overt lesions detectable by light microscopy. CONCLUSION: Combined analysis with the data of the previous studies yielded firm evidence that the spinal cord has a large capacity to recover from occult radiation injury induced by a commonly prescribed elective dose. This finding strengthens the rationale for selective use of radiotherapy to treat second primary tumors arising in previously irradiated tissues or late recurrences. However, some caution should be exercised in applying quantitative experimental data, because the length of follow-up in these experiments was limited to 2-2.5 years after reirradiation, whereas human myelopathy cases occasionally occur after longer latency. Because there is a large variation in long-term recovery among tissues, the tolerance of other tissues at risk should also be taken into account in prescribing therapy.
This article was published in Int J Radiat Oncol Biol Phys and referenced in Journal of Nuclear Medicine & Radiation Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

  • Eugene Stephane Mananga
    On Fer and Floquet-Magnus expansions: Application in solid-state nuclear magnetic resonance and physics
    PDF Version
  • David T Denhardt
    Epigenetics and sports medicine
    PPT Version | PDF Version
  • M V Raghavendra Rao
    Medical research – Scorpion as model
    PPT Version | PDF Version
  • Laidoudi Aicha
    Acute renal failure and uveitis, which diagnosis is most likely in internal medicine? Tinu syndrome, through two observations
    PPT Version | PDF Version
  • Julian M Menter
    Histology of Normal Human Skin
    PPT Version | PDF Version
  • Kyoungphile Nam
    Assessment of ecological impact of blast oxygen furnace slag used as a fill material on the surrounding environments
    PPT Version | PDF Version
  • Yosef Yarden
    Classically, the 3’untranslated region (3’UTR) is that region in eukaryotic protein-coding genes from the translation termination codon to the polyA signal. It is transcribed as an integral part of the mRNA encoded by the gene. However, there exists another kind of RNA, which consists of the 3’UTR alone, without all other elements in mRNA such as 5’UTR and coding region. The importance of independent 3’UTR RNA (referred as I3’UTR) was prompted by results of artificially introducing such RNA species into malignant mammalian cells. Since 1991, we found that the middle part of the 3’UTR of the human nuclear factor for interleukin-6 (NF-IL6) or C/EBP gene exerted tumor suppression effect in vivo. Our subsequent studies showed that transfection of C/EBP 3’UTR led to down-regulation of several genes favorable for malignancy and to up-regulation of some genes favorable for phenotypic reversion. Also, it was shown that the sequences near the termini of the C/EBP 3’UTR were important for its tumor suppression activity. Then, the C/EBP 3’UTR was found to directly inhibit the phosphorylation activity of protein kinase CPKC in SMMC-7721, a hepatocarcinoma cell line. Recently, an AU-rich region in the C/EBP 3’UTR was found also to be responsible for its tumor suppression. Recently we have also found evidence that the independent C/EBP 3’UTR RNA is actually exists in human tissues, such as fetal liver and heart, pregnant uterus, senescent fibroblasts etc. Through 1990’s to 2000’s, world scientists found several 3’UTR RNAs that functioned as artificial independent RNAs in cancer cells and resulted in tumor suppression. Interestingly, majority of genes for these RNAs have promoter-like structures in their 3’UTR regions, although the existence of their transcribed products as independent 3’UTR RNAs is still to be confirmed. Our studies indicate that the independent 3’UTR RNA is a novel non-coding RNA species whose function should be the regulation not of the expression of their original mRNA, but of some essential life activities of the cell as a whole.
    PPT Version | PDF Version
  • Tarek Kilani
    Counterfeit MEDICINES A GLOBAL THREAT
    PPT Version | PDF Version
  • Yong-Chul Jang
    Material flow analysis and recycling system of mercury-containing fluorescent lamps in Korea
    PPT Version | PDF Version
  • Angelica Constanta Visan
    Manifestations of Influenza in Romania
    PPT Version | PDF Version
  • Alejandro Rodríguez
    Integral utilization of lignocellulosic materials; residues of the agriculture and agri-food industry
    PPT Version | PDF Version
  • Fu Shi Quan
    Influenza virus-like particle vaccines elicit protective immunity in the early stage of vaccination
    PPT Version | PDF Version
  • Punit Kaur
    A Mouse Model for Triple-Negative Breast Cancer Stem Cells (TNBC-CSC) Exhibits an Aggressive Phenotype
    PPT Version | PDF Version
  • Frank S. Ong
    Next-generation sequencing in personalized medicine
    PPT Version | PDF Version
  • Jerzy Leszczynski
    Inexpensive and accurate – Novel computational methods for prediction of toxicity of nanomaterials
    PPT Version | PDF Version

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords