alexa Extra tree forests for sub-acute ischemic stroke lesion segmentation in MR sequences.
Psychiatry

Psychiatry

Journal of Addiction Research & Therapy

Author(s): Maier O, Wilms M, von der Gablentz J, Krmer UM, Mnte TF,

Abstract Share this page

Abstract BACKGROUND: To analyse the relationship between structure and (dys-)function of the brain after stroke, accurate and repeatable segmentation of the lesion area in magnetic resonance (MR) images is required. Manual delineation, the current gold standard, is time consuming and suffers from high intra- and inter-observer differences. NEW METHOD: A new approach is presented for the automatic and reproducible segmentation of sub-acute ischemic stroke lesions in MR images in the presence of other pathologies. The proposition is based on an Extra Tree forest framework for voxel-wise classification and mainly intensity derived image features are employed. RESULTS: A thorough investigation of multi-spectral variants, which combine the information from multiple MR sequences, finds the fluid attenuated inversion recovery sequence to be both required and sufficient for a good segmentation result. The accuracy can be further improved by adding features extracted from the T1-weighted and the diffusion weighted sequences. The use of other sequences is discouraged, as they impact negatively on the results. COMPARISON WITH EXISTING METHODS: Quantitative evaluation was carried out on 37 clinical cases. With a Dice coefficient of 0.65, the method outperforms earlier published methods. CONCLUSIONS: The approach proves especially suitable to differentiate between new stroke and other white matter lesions based on the FLAIR sequence alone. This, and the high overlap, renders it suitable for automatic screening of large databases of MR scans, e.g. for a subsequent neuropsychological investigation. Finally, each feature's importance is assessed in detail and the approach's statistical dependency on clinical and image characteristics is investigated. Copyright © 2014 Elsevier B.V. All rights reserved. This article was published in J Neurosci Methods and referenced in Journal of Addiction Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords