alexa Extracellular ATP causes ROCK I-dependent bleb formation in P2X7-transfected HEK293 cells.


Journal of Clinical & Cellular Immunology

Author(s): Morelli A, Chiozzi P, Chiesa A, Ferrari D, Sanz JM,

Abstract Share this page

Abstract The P2X7 ATP receptor mediates the cytotoxic effect of extracellular ATP. P2X7-dependent cell death is heralded by dramatic plasma membrane bleb formation. Membrane blebbing is a complex phenomenon involving as yet poorly characterized intracellular pathways. We have investigated the effect of extracellular ATP on HEK293 cells transfected with the cytotoxic/pore-forming P2X7 receptor. Addition of ATP to P2X7-transfected, but not to wt P2X7-less, HEK293 cells caused massive membrane blebbing within 1-2 min. UTP, a nucleotide incapable of activating P2X7, had no early effects on cell shape and bleb formation. Bleb formation triggered by ATP was reversible and required extracellular Ca2+ and an intact cytoskeleton. Furthermore, it was completely prevented by preincubation with the P2X blocker oxidized ATP. It was recently observed that the ROCK protein is a key determinant of bleb formation. Preincubation of HEK293-P2X7 cells with the ROCK blocker Y-27632 completely prevented P2X7-dependent blebbing. Although ATP triggered cleavage of the ROCK I isoform in P2X7-transfected HEK293 cells, the wide range caspase inhibitor z-VAD-fluoromethylketone had no effect. These observations suggest that P2X7-dependent plasma membrane blebbing depends on the activation of the serine/threonine kinase ROCK I.
This article was published in Mol Biol Cell and referenced in Journal of Clinical & Cellular Immunology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version