alexa Extracting dwell time sequences from processive molecular motor data.
Social & Political Sciences

Social & Political Sciences

Arts and Social Sciences Journal

Author(s): Milescu LS, Yildiz A, Selvin PR, Sachs F

Abstract Share this page

Abstract Processive molecular motors, such as kinesin, myosin, or dynein, convert chemical energy into mechanical energy by hydrolyzing ATP. The mechanical energy is used for moving in discrete steps along the cytoskeleton and carrying a molecular load. Single-molecule recordings of motor position along a substrate polymer appear as a stochastic staircase. Recordings of other single molecules, such as F1-ATPase, RNA polymerase, or topoisomerase, have the same appearance. We present a maximum likelihood algorithm that extracts the dwell time sequence from noisy data, and estimates state transition probabilities and the distribution of the motor step size. The algorithm can handle models with uniform or alternating step sizes, and reversible or irreversible kinetics. A periodic Markov model describes the repetitive chemistry of the motor, and a Kalman filter allows one to include models with variable step size and to correct for baseline drift. The data are optimized recursively and globally over single or multiple data sets, making the results objective over the full scale of the data. Local binary algorithms, such as the t-test, do not represent the behavior of the whole data set. Our method is model-based, and allows rapid testing of different models by comparing the likelihood scores. From data obtained with current technology, steps as small as 8 nm can be resolved and analyzed with our method. The kinetic consequences of the extracted dwell sequence can be further analyzed in detail. We show results from analyzing simulated and experimental kinesin and myosin motor data. The algorithm is implemented in the free QuB software.
This article was published in Biophys J and referenced in Arts and Social Sciences Journal

Relevant Expert PPTs

Relevant Speaker PPTs

  • B C Bera
    Generation of gateway clone library of virulence associated genes of zoonotic buffalopox virus: State-of-the-art resource for proteome analysis
    PPT Version | PDF Version

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version