alexa F(2)-isoprostanes mediate high glucose-induced TGF-beta synthesis and glomerular proteinuria in experimental type I diabetes.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Molecular Biomarkers & Diagnosis

Author(s): Montero A, Munger KA, Khan RZ, Valdivielso JM, Morrow JD,

Abstract Share this page

Abstract BACKGROUND: The recently discovered arachidonic acid derivatives, isoprostanes, are increased in pathological conditions associated with oxidative stress, such as diabetes. No role has yet been described for isoprostanes during the development of diabetic nephropathy. Cell culture in high ambient glucose has been used as a model in elucidating cellular mechanisms underlying diabetic nephropathy. Among the growth factors involved in the effect of high glucose, transforming growth factor-beta (TGF-beta) has been described as playing a key role in the development of nephropathy. METHODS: Streptozotocin-induced diabetic rats were supplemented in their diet with the antioxidant vitamin E (1000 U/kg diet). Blood and urine samples were taken to determine renal function and isoprostane concentration, as determined by gas chromatography/mass spectrometry. Glomerular mesangial and endothelial cells were cultured in high ambient glucose to determine the synthesis of isoprostanes and the role of isoprostanes in high glucose-induced synthesis of TGF-beta. RESULTS: Streptozotocin-induced diabetic rats had marked increases in plasma levels and urinary excretion rates of F(2)-isoprostanes. Dietary supplementation with vitamin E normalized (plasma) and reduced (urine) isoprostane levels and, surprisingly, improved proteinuria and blood urea nitrogen (BUN) levels. High ambient glucose increased F(2)-isoprostane synthesis in glomerular endothelial and mesangial cells in culture. Incubation of glomerular cells with F(2)-isoprostanes stimulated the production of TGF-beta. CONCLUSIONS: Increased F(2)-isoprostane synthesis during diabetes appears to be responsible in part for the increase in renal TGF-beta, a well-known mediator of diabetic nephropathy. This article was published in Kidney Int and referenced in Journal of Molecular Biomarkers & Diagnosis

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords