alexa Fabrication of gelatin calcium phosphate composite nanofibrous membranes by biomimetic mineralization.
Engineering

Engineering

International Journal of Advancements in Technology

Author(s): Choi MO, Kim YJ

Abstract Share this page

Abstract Based on the principles of biomimetic mineralization, biocomposite nanofibrous membranes were fabricated by the growth of CaP crystals on electrospun gelatin nanofibers to mimic both the physical architecture and chemical composition of natural bone ECM. Plenty more CaP crystals formed on the nanofibrous membrane containing Ca(2+) ion precursors, in which these crystals were also observed on the inner side of membrane. The release rate of Ca(2+) ion precursors from the nanofibrous membrane was slower than that of PO(4)(3-) ion precursors, suggesting the existence of more strong intermolecular interaction between gelatin and Ca(2+) ions. ATR-FTIR and XRD results clearly revealed the formation of CaP crystals mixed with apatite and CaCO(3), or apatite and TCP on the membranes. The Ca/P molar ratio of crystals obtained from the XPS data was 2.03 and 1.60, which depended on the mineralization conditions. Higher amount of CaP crystals significantly accelerated the deposit rate of bone-like apatite on the surface of composite membrane, meaning to the improved in vivo bone bioactivity. Copyright © 2012 Elsevier B.V. All rights reserved. This article was published in Int J Biol Macromol and referenced in International Journal of Advancements in Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords