alexa Factors governing the activity of lyophilised and immobilised lipase preparations in organic solvents.
Biochemistry

Biochemistry

Enzyme Engineering

Author(s): Persson M, Wehtje E, Adlercreutz P

Abstract Share this page

Abstract Active site titration and activity measurements were performed in hexane on lyophilised lipase preparations containing different amounts of phosphate buffer and lipase immobilised on porous polypropylene. Lyophilisation of Thermomyces lanuginosus lipase with large quantities of phosphate salts (200 mM) increased the specific activity fourfold, and the number of rapidly titratable active sites increased to 50 \% from the 13 \% observed when smaller amounts of phosphate buffer were used (20 mM) during lyophilisation. The phosphate buffer worked as an immobilisation matrix for the lipase, and the increase in specific activity was at least partly due to decreased mass transfer limitations. When lipase was immobilised on porous polypropylene, the specific activity was 770 times higher than that of the best freeze-dried preparation. At optimal enzyme loading, 93 \% of the enzyme molecules were titrated at a high rate; this indicates that this adsorption on a hydrophobic surface was a very efficient means of reducing mass transfer limitations and of immobilising the enzyme in its active conformation for use in organic solvents. The variation in specific activity with water activity was found to correlate very well with the variation in titratable active sites when lipases from Burkholderia cepacia and Thermomyces lanuginosus were immobilised on porous polypropylene. The catalytic activity per competent active site was thus constant over the whole range of water activities. This article was published in Chembiochem and referenced in Enzyme Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords