alexa Failure to precondition pathological human myocardium.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Health & Medical Informatics

Author(s): Ghosh S, Standen NB, Galiianes M

Abstract Share this page

Abstract OBJECTIVES: We investigated the effects of ischemic preconditioning (PC) on diabetic and failing human myocardium and the role of mitochondrial KATP channels on the response in these diseased tissues. BACKGROUND: There is conflicting evidence to suggest that PC is a healthy heart phenomenon. METHODS: Right atrial appendages were obtained from seven different groups of patients: nondiabetics, diet-controlled diabetics, noninsulin-dependent diabetics (NIDD) receiving KATP channel blockers, insulin-dependent diabetics (IDD), and patients with left ventricular ejection fraction (LVEF) >50\%, LVEF between 30\% and 50\% and LVEF <30\%. After stabilization, the muscle slices were randomized into five experimental groups (n = 6/group): 1) aerobic control-incubated in oxygenated buffer for 210 min, 2) ischemia alone-90 min ischemia followed by 120 min reoxygenation, 3) preconditioning by 5 min ischemia/5 min reoxygenation before 90 min ischemia/120 min reoxygenation, 4) diazoxide (Mito KATP opener, 0.1 mm)-for 10 min before the 90 min ischemia/120 min reoxygenation and 5) glibenclamide (10 microm)-10 min exposure prior to PC (only in the diabetic patient groups). Creatine kinase leakage into the medium (CK, U/g wet wt) and MTT reduction (OD/mg wet wt), an index of cell viability, were assessed at the end of the experiment. RESULTS: Ischemia caused similar injury in both normal and diseased tissue. Preconditioning prevented the effects of ischemia in all groups except NIDD, IDD and poor cardiac function (<30\%). In the diazoxide-treated groups, protection was mimicked in all groups except the NIDD and IDD groups. Interestingly, glybenclamide abolished protection in nondiabetic and diet-controlled NIDD groups and did not affect NIDD groups receiving KATP channel blockers or IDD groups. CONCLUSIONS: These results show that failure to precondition the diabetic heart is due to dysfunction of the mitochondrial KATP channels and that the mechanism of failure in the diabetic heart lies in elements of the signal transduction pathway different from the mitochondrial KATP channels.
This article was published in J Am Coll Cardiol and referenced in Journal of Health & Medical Informatics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 5th International Conference on Medical Informatics and Telehealth
    August 29-30, 2017 Prague Czech Republic

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords