alexa Far-infrared absorption of water clusters by first-principles molecular dynamics.
Physicaltherapy & Rehabilitation

Physicaltherapy & Rehabilitation

Journal of Yoga & Physical Therapy

Author(s): Lee MS, Baletto F, Kanhere DG, Scandolo S

Abstract Share this page

Abstract Based on first-principle molecular dynamic simulations, we calculate the far-infrared spectra of small water clusters (H(2)O)(n) (n = 2, 4, 6) at frequencies below 1000 cm(-1) and at 80 K and at atmospheric temperature (T>200 K). We find that cluster size and temperature affect the spectra significantly. The effect of the cluster size is similar to the one reported for confined water. Temperature changes not only the shape of the spectra but also the total strength of the absorption, a consequence of the complete anharmonic nature of the classical dynamics at high temperature. In particular, we find that in the frequency region up to 320 cm(-1), the absorption strength per molecule of the water dimer at 220 K is significantly larger than that of bulk liquid water, while tetramer and hexamer show bulklike strengths. However, the absorption strength of the dimer throughout the far-infrared region is too small to explain the measured vapor absorption continuum, which must therefore be dominated by other mechanisms. This article was published in J Chem Phys and referenced in Journal of Yoga & Physical Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords