alexa Fas APO-1 gene transfer for human malignant glioma.
Molecular Biology

Molecular Biology

Journal of Cytology & Histology

Author(s): Weller M, Malipiero U, RensingEhl A, Barr PJ, Fontana A

Abstract Share this page

Abstract Human malignant glioma cells are susceptible to apoptosis induced by antibodies to Fas/APO-1, a cytokine receptor protein of the nerve growth factor/tumor necrosis factor receptor superfamily. Here we show that a critical level of cell surface expression of Fas/APO-1 is a prerequisite for induction of glioma cell apoptosis via Fas/APO-1. Although Fas/APO-1 mRNA was expressed in three Fas/APO-1 antibody-resistant glioma cell lines, these cells expressed either little Fas/APO-1 protein (LN-319 and LN-405) or an abnormal Fas/APO-1 protein that was not translocated to the cell membrane and therefore functionally inactive (LN-308). Although all glioma cell lines expressed mRNA for Fas/APO-1-delta TM, a soluble form of Fas/APO-1 lacking the transmembrane domain, none of the cell lines released detectable amounts of soluble Fas/APO-1, a potential endogenous antagonist of Fas/APO-1-mediated glioma cell apoptosis. Stable transfection of three resistant glioma cell lines with a human Fas/APO-1 cDNA expression vector dramatically enhanced cell surface expression of Fas/APO-1 and induced susceptibility to Fas/APO-1 antibody-mediated apoptosis. These data indicate that malignant glioma cells, unlike other tumor cells, uniformly harbor the intracellular cascade required for Fas/APO-1-mediated apoptosis. Low level of Fas/APO-1 expression results from inefficient transcription and translation of the Fas/APO-1 gene or the synthesis of mutant Fas/APO-1 proteins. gamma-Interferon, tumor necrosis factor-alpha, and interleukin 1 beta augmented Fas/APO-1-mediated apoptosis of Fas/APO-1-transfected glioma cells by acting on the subcellular suicidal cascade triggered by Fas/APO-1 activation. Dexamethasone attenuated Fas/APO-1 antibody-induced apoptosis, not only of constitutively Fas/APO-1-positive glioma cells, but also of Fas/APO-1-transfected glioma cells. The antiapoptotic effect of dexamethasone could be overcome by preexposure of the glioma cells to gamma-interferon or by coexposure to Fas/APO-1 antibodies and cycloheximide. Thus, Fas/APO-1 gene transfer and combined immunotherapy using Fas/APO-1 antibodies and cytokines may overcome Fas/APO-1 antibody resistance of Fas/APO-1-negative human malignant glioma cells, which may represent subpopulations within single gliomas or form a separate subgroup of human malignant gliomas.
This article was published in Cancer Res and referenced in Journal of Cytology & Histology

Relevant Expert PPTs

Relevant Speaker PPTs

  • Mapitsi S Thantsha
    In vitro antagonistic effects of Listeria adhesion protein (LAP)-expressing Lactobacillus casei against Listeria monocytogenes and Salmonella Typhimurium Copenhagen
    PPT Version | PDF Version
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

ag[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords