alexa Fast and sensitive method to determine chloroanisoles in cork using an internally cooled solid-phase microextraction fiber.
Chemistry

Chemistry

Chemical Sciences Journal

Author(s): Carasek E, Cudjoe E, Pawliszyn J

Abstract Share this page

Abstract A new generation of solid-phase microextraction (SPME) fiber, an internally cooled fiber (cold fiber with polydimethylsiloxane loading) that allows heating the sample matrix and simultaneously cooling the fiber coating, was used to determine 2,4-dichloroanisole, 2,6-dichloroanisole, 2,4,6-trichloroanisole and pentachloroanisole in cork. A comparison between the cold fiber and regular SPME fiber was performed. An automated headspace solid-phase microextraction (HS-SPME) using commercial fibers and an internally cooled SPME fiber (CF-HS-SPME) coupled to gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS) was used. The extraction conditions for both CF-HS-SPME and HS-SPME were optimized using full factorial design and Doehlert matrix. The best extraction conditions for CF-HS-SPME were obtained using 10 min of incubation time, 10 min of extraction time, and sample and fiber temperature of 130 and 10 degrees C, respectively. For HS-SPME, polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber was used with 10 min of incubation time, 75 min of extraction time, 85 degrees C of sample temperature, 8 ml of water was added and agitated at 500 rpm. The quantification limits for the target compounds using CF-HS-SPME procedure were between 0.8 and 1.6 ng g(-1) of cork, while for HS-SPME were between 4 and 6 ng g(-1) of cork. Furthermore, the CF-HS-SPME procedure could be used as a non-destructive method after minor modification of the agitator for the autosampler. This article was published in J Chromatogr A and referenced in Chemical Sciences Journal

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords