alexa Fast transient thermal analysis of gold nanoparticles in tissue-like medium.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Liu C, Li BQ, Mi CC

Abstract Share this page

Abstract Gold-nanoparticle-based hyperthermia has attracted considerable attention in the recent ten years in cancer treatment. In hyperthermia-based cancer treatment, in order to produce efficient thermal therapy yet without excessive heat damage to human body, besides the steady-state thermal condition, the transient thermal response is of vital importance. As part of theoretical research associated with nanoparticle-mediated hyperthermia therapy for cancer treatment, the transient heat transfer process of laser interacting with gold nanoparticle in tissue-like medium is investigated. Within the framework of dual-phase-lag (DPL) model, this paper focuses on the microscopic heat transfer performance of a gold nanoparticle in a surrounding medium. A semianalytical solution of 1-D nonhomogenous DPL equation in spherical coordinates is presented for a heat transfer process with a constant laser heat source and a short-pulsed laser heating source. Results show that the transient temperature calculated by DPL model greatly exceeds that predicted by the classical diffusion model, with either a constant source or a pulsed source. This phenomenon is mainly attributed by the phase lag of heat flux in the surrounding tissue. This article was published in IEEE Trans Nanobioscience and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords