alexa Fasting-induced changes in the hypothalamic-pituitary-GH axis in the absence of GH expression: lessons from the spontaneous dwarf rat.
Biochemistry

Biochemistry

Biochemistry & Physiology: Open Access

Author(s): Park S, Sohn S, Kineman RD

Abstract Share this page

Abstract Fasting results in a reciprocal shift in hypothalamic neuropeptide Y (NPY) and GH-releasing hormone (GHRH) expression in the adult male rat. It is hypothesized that the fasting-induced rise in NPY is responsible for the GHRH decline and subsequent attenuation of pulsatile GH release. Fasting also leads to a decrease in circulating IGF-I, attributed to both reduced GH release and peripheral GH resistance. Although pituitary GH output is suppressed in the fasted rat, we report herein that pituitary GHRH receptor (GHRH-R) and GH secretagogue receptor (GHS-R) mRNA levels are increased, while pituitary expression of the somatostatin receptor subtype 2 (sst2) and 5 (sst5) is decreased, as determined by real-time reverse transcription (RT)-PCR. A shift in the expression of pituitary receptor subtypes to favor GH synthesis and release may be due, at least in part, to a decline in GH/IGF-I negative feedback. In order to test this hypothesis, we compared hypothalamic and pituitary response to fasting (72 h) in normal male rats and rats with isolated GH deficiency (spontaneous dwarf rats (SDR)). Circulating GH levels were undetectable in SDR, and IGF-I levels were less than 10\% of normal controls. Fasting stimulated NPY mRNA levels in SDR; however, the rise in NPY mRNA levels was not accompanied by a fall in GHRH mRNA, as observed in fasted normal rats. In fact, GHRH mRNA levels paradoxically rose in the fasted SDR to 135\% of fed controls. At the pituitary level, fasting did not alter sst2 and sst5 mRNA levels in SDR but did stimulate the expression of GHRH-R and GHS-R to 165\% and 149\% of fed controls, respectively. These results demonstrate that the fasting-induced changes in pituitary expression of sst2 and sst5, but not GHRH-R and GHS-R, are GH/IGF-I dependent. In addition, these results argue against the theory that the negative association of NPY and GHRH expression observed following fasting represents a simple cause-and-effect relationship and suggest that GH, either directly or indirectly, mediates the effects of fasting on hypothalamic GHRH expression.
This article was published in J Endocrinol and referenced in Biochemistry & Physiology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th International Conference on Structural Biology
    September 18-20, 2017 Zurich, Switzerland

  •  2nd International Conference on Biochemistry
    Sep 21-22, 2017, Macau, Hong Kong
  • 2nd International Conference on Biochemistry
    September 28-29, 2017 Dubai, UAE

  • 3rd Annual Congress on Bioscience
    October 16-17, 2017 Dubai,UAE

  • 3rd International Conference on Transcriptomics
    October 30 - November 01, 2017 Bangkok, Thailand

  • 3rd International Conference on Genetic and Protein Engineering (10 Plenary Forums - 1 Event)
    November 08-09, 2017 Las Vegas, USA

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords