alexa Fate of Escherichia coli O157:H7 in irrigation water on soils and plants as validated by culture method and real-time PCR.
Agri and Aquaculture

Agri and Aquaculture

Advances in Crop Science and Technology

Author(s): Ibekwe AM, Watt PM, Shouse PJ, Grieve CM

Abstract Share this page

Abstract One of the most common vehicles by which Escherichia coli O157:H7 may be introduced into crops is contaminated irrigation water. Water contamination is becoming more common in rural areas of the United States as a result of large animal operations, and up to 40\% of tested drinking-water wells are contaminated with E. coli. In this study, 2 contrasting soil samples were inoculated with E. coli O157:H7 expressing green fluorescent protein through irrigation water. Real-time PCR and culture methods were used to quantify the fate of this pathogen in phyllosphere (leaf surface), rhizosphere (volume of soil tightly held by plant roots), and non-rhizosphere soils. A real-time PCR assay was designed with the eae gene of E. coli O157:H7. The probe was incorporated into real-time PCR containing DNA extracted from the phyllosphere, rhizosphere, and non-rhizosphere soils. The detection limit for E. coli O157:H7 quantification by real-time PCR was 1.2 x 10(3) in the rhizosphere, phyllosphere, and non-rhizosphere samples. E. coli O157:H7 concentrations were higher in the rhizosphere than in the non-rhizosphere soils and leaf surfaces, and persisted longer in clay soil. The persistence of E. coli O157:H7 in phyllosphere, rhizosphere, and non-rhizosphere soils over 45 days may play a significant part in the recontamination cycle of produce in the environment. Therefore, the rapidity of the real-time PCR assay may be a useful tool for quantification and monitoring of E. coli O157:H7 in irrigation water and on contaminated fresh produce. This article was published in Can J Microbiol and referenced in Advances in Crop Science and Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version