alexa Fate of polycyclic aromatic hydrocarbons during composting of oily sludge.
Environmental Sciences

Environmental Sciences

Journal of Bioremediation & Biodegradation

Author(s): Kriipsalu M, Marques M, Hogland W, Nammari DR

Abstract Share this page

Abstract In order to assess the effectiveness of aerobic degradation with emphasis on the 16 U.S. EPA priority polycyclic aromatic hydrocarbons (PAH), oily sludge generated by a dissolved air flotation flocculation unit of a wastewater treatment plant in a petroleum refinery was amended with remediated oil-contaminated soil and non-mature garden waste compost 40:40:20 (wet weight) respectively. About 21 t of the mixture with a top-layer formed by 30 cm of remediated soil was treated in a 28 m3 air-forced reactor. The PAH concentration was monitored for 370 days. In the top-layer, a reduction of 88 \% of the total extractable PAH was measured at day 62 and a final reduction of 93\% at day 370. In the mixture, a reduction of 72\% in total PAH was measured at day 62, followed by fluctuation in concentration with a final measured reduction of 53\% at day 370. The analysis of individual PAH in the mixture suggested that volatilization and biodegradation are the main mechanisms responsible for the reduction of 2 ring PAH and 3-4 ring PAH, respectively. Fluctuation of 5-6 ring PAH concentrations with increase observed at the end of the period might result from a combination of the following: (i) sequestration of large PAH in the organic matrix (reducing bioavailability, biodegradability and eventually, extractability) and desorption as composting progresses; (ii) heterogeneous distribution of the stable large PAH in the mixture, thus affecting sampling. It was concluded that one-time composting in static-aerated biopiles with organic amendments as the sole strategy to treat oily sludge is very effective in reducing the content of 2-4 ring PAH, but it is not effective in reducing the content of 5-6 ring PAHs, even after a relatively long time span (370 d). The concentrations measured in the remediated soil that formed the top layer after 62 days of composting suggests that further relevant reduction of residual PAH (89\% of total PAH and 69\% of 5-6 ring PAH) can be obtained if the contaminated masses are exposed to a second thermophilic phase. This could be achieved by adding new easily biodegradable organic amendments to the contaminated masses after some months of composting, remixing and composting again for a minimum additional period of 2 months. This article was published in Environ Technol and referenced in Journal of Bioremediation & Biodegradation

Relevant Expert PPTs

Recommended Conferences

  • 7th International Conference and Exhibition on Biopolymers and Bioplastics
    October 19-21, 2017 San Francisco, USA

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords