alexa Fatty acid transport in Saccharomyces cerevisiae. Directed mutagenesis of FAT1 distinguishes the biochemical activities associated with Fat1p.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Metabolomics:Open Access

Author(s): Zou Z, DiRusso CC, Ctrnacta V, Black PN

Abstract Share this page

Abstract The fatty acid transport protein Fat1p functions as a component of the long-chain fatty acid transport apparatus in the yeast Saccharomyces cerevisiae. Fat1p has significant homologies to the mammalian fatty acid transport proteins (FATP) and the very long-chain acyl-CoA synthetases (VLACS). In order to further understand the functional roles intrinsic to Fat1p (fatty acid transport and VLACS activities), a series of 16 alleles carrying site-directed mutations within FAT1 were constructed and analyzed. Sites chosen for the construction of amino acid substitutions were based on conservation between Fat1p and the mammalian FATP orthologues and included the ATP/AMP and FATP/VLACS signature motifs. Centromeric and 2 mu plasmids encoding mutant forms of Fat1p were transformed into a yeast strain containing a deletion in FAT1 (fat1Delta). For selected subsets of FAT1 mutant alleles, we observed differences between the wild type and mutants in 1) growth rates when fatty acid synthase was inhibited with 45 microm cerulenin in the presence of 100 microm oleate (C(18:1)), 2) levels of fatty acid import monitored using the accumulation of the fluorescent fatty acid 4,4-difluoro-5-methyl-4-bora-3a,4a-diaza-S-indacene-3-dodecanoic acid and [(3)H]oleate, 3) levels of lignoceryl (C(24:0)) CoA synthetase activities, and 4) fatty acid profiles monitored using gas chromatography/mass spectrometry. In most cases, there was a correlation between growth on fatty acid/cerulenin plates, the levels of fatty acid accumulation, very long-chain fatty acyl-CoA synthetase activities, and the fatty acid profiles in the different FAT1 mutants. For several notable exceptions, the fatty acid transport and very long-chain fatty acyl-CoA synthetase activities were distinguishable. The characterization of these novel mutants provides a platform to more completely understand the role of Fat1p in the linkage between fatty acid import and activation to CoA thioesters. This article was published in J Biol Chem and referenced in Metabolomics:Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords