alexa Feature extraction and selection for objective gait analysis and fall risk assessment by accelerometry.


International Journal of Neurorehabilitation

Author(s): Caby B, Kieffer S, de Saint Hubert M, Cremer G, Macq B

Abstract Share this page

Abstract BACKGROUND: Falls in the elderly is nowadays a major concern because of their consequences on elderly general health and moral states. Moreover, the aging of the population and the increasing life expectancy make the prediction of falls more and more important. The analysis presented in this article makes a first step in this direction providing a way to analyze gait and classify hospitalized elderly fallers and non-faller. This tool, based on an accelerometer network and signal processing, gives objective informations about the gait and does not need any special gait laboratory as optical analysis do. The tool is also simple to use by a non expert and can therefore be widely used on a large set of patients. METHOD: A population of 20 hospitalized elderlies was asked to execute several classical clinical tests evaluating their risk of falling. They were also asked if they experienced any fall in the last 12 months. The accelerations of the limbs were recorded during the clinical tests with an accelerometer network distributed on the body. A total of 67 features were extracted from the accelerometric signal recorded during a simple 25 m walking test at comfort speed. A feature selection algorithm was used to select those able to classify subjects at risk and not at risk for several classification algorithms types. RESULTS: The results showed that several classification algorithms were able to discriminate people from the two groups of interest: fallers and non-fallers hospitalized elderlies. The classification performances of the used algorithms were compared. Moreover a subset of the 67 features was considered to be significantly different between the two groups using a t-test. CONCLUSIONS: This study gives a method to classify a population of hospitalized elderlies in two groups: at risk of falling or not at risk based on accelerometric data. This is a first step to design a risk of falling assessment system that could be used to provide the right treatment as soon as possible before the fall and its consequences. This tool could also be used to evaluate the risk several times during the revalidation procedure.
This article was published in Biomed Eng Online and referenced in International Journal of Neurorehabilitation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version