alexa Female sticklebacks count alleles in a strategy of sexual selection explaining MHC polymorphism.


Immunogenetics: Open Access

Author(s): Reusch TB, Hberli MA, Aeschlimann PB, Milinski M, Reusch TB, Hberli MA, Aeschlimann PB, Milinski M

Abstract Share this page

Abstract The origin and maintenance of polymorphism in major histocompatibility complex (MHC) genes in natural populations is still unresolved. Sexual selection, frequency-dependent selection by parasites and pathogens, and heterozygote advantage have been suggested to explain the maintenance of high allele diversity at MHC genes. Here we argue that there are two (non-exclusive) strategies for MHC-related sexual selection, representing solutions to two different problems: inbreeding avoidance and parasite resistance. In species prone to inadvertent inbreeding, partners should prefer dissimilar MHC genotypes to similar ones. But if the goal is to maximize the resistance of offspring towards potential infections, the choosing sex should prefer mates with a higher diversity of MHC alleles. This latter strategy should apply when there are several MHC loci, as is the case in most vertebrates. We tested the relative importance of an 'allele counting' strategy compared to a disassortative mating strategy using wild-caught three-spined sticklebacks (Gasterosteus aculeatus) from an interconnected system of lakes. Here we show that gravid female fish preferred the odour of males with a large number of MHC class-IIB alleles to that of males with fewer alleles. Females did not prefer male genotypes dissimilar to their own. This article was published in Nature and referenced in Immunogenetics: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version