alexa Femtomolar limit of detection with a magnetoresistive biochip.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Martins VC, Cardoso FA, Germano J, Cardoso S, Sousa L,

Abstract Share this page

Abstract In this paper the biological limit of detection of a spin-valve-based magnetoresistive biochip applied to the detection of 20 mer ssDNA hybridization events is presented. Two reactional variables and their impact on the biomolecular recognition efficiency are discussed. Both the influence of a 250 nm diameter magnetic particle attached to the target molecule during the hybridization event and the effect of a magnetic focusing system in the hybridization of pre-labeled target DNA (assisted hybridization) are addressed. The particles carrying the target molecules are attracted to the probe active sensor sites by applying a 40 mA DC current on U-shaped aluminium current lines. Experiments comparing pre-hybridization versus post-hybridization magnetic labeling and passive versus magnetically assisted hybridization were conducted. The efficiency of a passive hybridization is reduced by about 50\% when constrained to the operational conditions (sample volume, reaction time, temperature and magnetic label) of an on-chip real-time hybridization assay. This reduction has shown to be constant and independent from the initial target concentration. Conversely, the presence of the magnetic label improved the limit of detection when a magnetically assisted hybridization was performed. The use of a labeled target focusing system has permitted a gain of three orders of magnitude (from 1 pM down to 1 fM) in the sensitivity of the device, as compared with passive, diffusion-controlled hybridization. This article was published in Biosens Bioelectron and referenced in Journal of Nanomedicine & Nanotechnology

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords