alexa Fenofibrate modifies human vascular smooth muscle proteoglycans and reduces lipoprotein binding.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Clinical & Experimental Pharmacology

Author(s): Nigro J, Ballinger ML, Dilley RJ, Jennings GL, Wight TN,

Abstract Share this page

Abstract AIMS/HYPOTHESIS: Vascular disease in type 2 diabetes is associated with an up-regulation of atherogenic growth factors, which stimulate matrix synthesis including proteoglycans. We have examined the direct actions of fenofibrate on human vascular smooth muscle cells (VSMCs) and have specifically investigated proteoglycan synthesis and binding to LDL. METHODS: Proteoglycans synthesised by human VSMCs treated with fenofibrate (30 micromol/l) were assessed for binding to human LDL using a gel mobility shift assay, metabolically labelled with [(35)S]-sulphate and quantitated by cetylpyridinium chloride. They were then assessed for electrophoretic mobility by SDS-PAGE, for size by gel filtration, for sulphation pattern by fluorophore-assisted carbohydrate electrophoresis, and for glycosaminoglycan (GAG) composition by enzyme digestion. RESULTS: Proteoglycans synthesised in the presence of fenofibrate showed an increase in the half-maximum saturation concentration of LDL from 36.8+/-12.4 microg/ml to 77.7+/-17 microg/ml under basal conditions, from 24.9+/-4.6 microg/ml to 39.1+/-6.1 microg/ml in the presence of TGF-beta1, and from 9.5+/-4.4 microg/ml to 31.1+/-3.4 microg/ml in the presence of platelet-derived growth factor/insulin. Fenofibrate treatment in the presence of TGF-beta1 inhibited the incorporation of [(35)S]-sulphate into secreted and cell-associated proteoglycans synthesised by human VSMCs by 59.2\% (p<0.01) and 39.8\% (p<0.01) respectively. The changes in sulphate incorporation following treatment with fenofibrate were associated with a concentration-related increase in the electrophoretic mobility due to a reduction in GAG length. There was no change in the sulphation pattern; however, there was an alteration in the disaccharide composition of the GAGs. CONCLUSIONS/INTERPRETATION: Fenofibrate modifies the structure of vascular proteoglycans by reducing the length of the GAG chains and GAG composition, resulting in reduced binding to human LDL, a mechanism which may lead to a reduction of atherosclerosis and cardiovascular disease in people with diabetes treated with fenofibrate. This article was published in Diabetologia and referenced in Journal of Clinical & Experimental Pharmacology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords