alexa Fgf-2 regulates enamel and dentine formation in mouse tooth germ.
Medicine

Medicine

Advanced Techniques in Biology & Medicine

Author(s): Tsuboi T, Mizutani S, Nakano M, Hirukawa K, Togari A

Abstract Share this page

Abstract We examined the effects of basic fibroblast growth factor (FGF-2) on cultured lower molar tooth germ at the differentiative (bell) stage. Although FGF-2 has been detected in odontogenesis, its roles in biological activities, such as cell proliferation, differentiation and extracellular matrix mineralization are unclear. We assayed mRNA levels of the differentiation markers, dentine sialophosphoprotein (DSPP), amelogenin and alkaline phosphatase (ALP) using reverse transcription-polymerase chain reaction (RT-PCR), and histological methods. Tooth germs dissected from 17-day-old embryonic mice were cultured for 4 days with either recombinant human FGF-2 or specific antisense phosphorothioate oligodeoxynucleotide (antisense ODN) for FGF-2. Exogenous FGF-2 decreased the gene expression of differentiation markers in molars at the bell stage. Abrogation of endogenous FGF-2 by antisense ODN increased the gene expression of differentiation markers, and also significantly enhanced enamel and dentine formation. This histological change was recovered by adding exogeneous FGF-2. These findings suggest that FGF-2 at the bell stage regulates cell differentiation and matrix secretion. This article was published in Calcif Tissue Int and referenced in Advanced Techniques in Biology & Medicine

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords