alexa Fiber type populations and Ca2+-activation properties of single fibers in soleus muscles from SHR and WKY rats.
Biomedical Sciences

Biomedical Sciences

Journal of Bioanalysis & Biomedicine

Author(s): Bortolotto SK, Stephenson DG, Stephenson GM

Abstract Share this page

Abstract Electrophoretic analyses of muscle proteins in whole muscle homogenates and single muscle fiber segments were used to examine myosin heavy chain (MHC) and myosin light chain 2 (MLC2) isoform composition and fiber type populations in soleus muscles from spontaneously hypertensive rats (SHRs) and their age-matched normotensive controls [Wistar-Kyoto (WKY) rats], at three stages in the development of high blood pressure (4 wk, 16 wk, and 24 wk of age). Demembranated (chemically skinned with 2\% Triton X-100), single fiber preparations were used to determine the maximum Ca2+-activated force per cross-sectional area, calcium sensitivity, and degree of cooperativity of the contractile apparatus and Ca2+-regulatory system with respect to Ca2+. The results show that, at all ages examined, 1) SHR soleus contained a lower proportion of MHCI and MLC2 slow (MLC2s) and a higher proportion of MHCIIa, MHCIId/x, and MLC2 fast (MLC2f ) isoforms than the age-matched controls; 2) random dissection of single fibers from SHR and WKY soleus produced four populations of fibers: type I (expressing MHCI), type IIA (expressing MHCIIa), hybrid type I+IIA (coexpressing MHCI and MHCIIa), and hybrid type IIA+IID (coexpressing MHCIIa and MHCIId/x); and 3) single fiber dissection from SHR soleus yielded a lower proportion of type I fibers, a higher proportion of fast-twitch fibers (types IIA and IIA+IID), and a higher proportion of hybrid fibers (types I+IIA and IIA+IID) than the homologous muscles from the age-matched WKY rats. Because the presence of hybrid fibers is viewed as a marker of muscle transformation, these data suggest that SHR soleus undergoes transformation well into adulthood. Our data show also that, for a given fiber type, there are no significant differences between SHR and WKY soleus muscles with respect to any of the Ca2+-activation properties examined. This finding indicates that the lower specific tensions reported in the literature for SHR soleus muscles are not due to strain- or hypertension-related differences in the function of the contractile apparatus or regulatory system.
This article was published in Am J Physiol and referenced in Journal of Bioanalysis & Biomedicine

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version